Analyzing Axial Stress and Deformation of Tubular for Steam Injection Process in Deviated Wells Based on the Varied (T, P) Fields

نویسندگان

  • Yunqiang Liu
  • Jiuping Xu
  • Shize Wang
  • Bin Qi
چکیده

The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing Packer's Deformation of Tubular for Unsetting Process in HTHP Wells under Variable (T, P) Fields

In this paper, the axial stress and deformation of high temperature high pressure super-deep deviated gas wells are studied. A new model presents multiple nonlinear equation systems, which comprehensively consider the axial load of the tubular string, internal and external fluid pressure, normal pressure between the tube and well wall, friction and the viscous friction of fluid flowing under va...

متن کامل

A Numerical Simulation Study on Wellbore Temperature Field of Water Injection in Highly Deviated Wells

According to the temperature distribution of water injection well-bore in highly deviated wells under different conditions and unstable temperature field heat conduction principles, a true three-dimensional model was established to analyze the law of variation on temperature of highly deviated wells during the water injection process, and to analyze the factors that influence the water injectio...

متن کامل

The Research on the Biggest Borehole Curvature that Allowed through for the Rotating Casing (RESEARCH NOTE)

With the development of highly-deviated well cementing techniques, rotating casing cementing technology has got more and more attention. The rotating casing technique can improve the displacement efficiency of cement paste, and then enhance the quality of well cementation. In the stuck section, the rotating casing can redress the well to make the casing run sequentially. The casing endures shea...

متن کامل

A Mechanical Model and its Experimental Verification for a Water Injection String in a Highly Deviated Well

Water injection strings in highly deviated wells are subjected to complex forces on the string bore. In this work, a mechanical model is developed for these forces and for those on downhole tools. On the basis of this model, and taking account of the characteristics of the string in different working conditions, a temperature field model and a pressure field model are introduced, and a statical...

متن کامل

Degree of Bending (DoB) in Tubular KT-Joints of Jacket Structures Subjected to Axial Loads

The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of Hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013